اشکالات وارد بر هندسه اقلیدسی :
اصل اول - از هر نقطه میتوان خط مستقیمی به هر نقطه دیگری کشید یا اینکه کوتاهترین فاصله مابین دو نقطه یک پاره خط مستقیم است .
اصل دوم - هر پاره خط مستقیم را میتوان روی همان خط بهطور نامحدود امتداد داد .
اصل سوم - میتوان دایرهای به هر نقطه دلخواه به عنوان مرکز آن و با شعاعی مساوی هر پاره خط رسم کرد
اصل چهارم - همه زوایای قائمه با هم مساوی هستند .
اصل پنجم - از یک نقطه خارج یک خط ، یک و تنها یک خط میتوان موازی با خط مفروض رسم کرد .
طبق تعاریف فعلی " اصل پنجم اقلیدس که ایجاز سایر اصول را نداشت ، به هیچ وجه واجد صفت بدیهی نبود . در واقع این اصل بیشتر به یک قضیه شباهت داشت تا به یک اصل .
اشیا در دنیای فیزیکی با هندسه اقلیدسی سازگارند و هندسههای نااقلیدسی زیر مجموعهای از هندسه اقلیدسی محسوب میشوند به طور مثال یک مکعب را در نظر بگیرید که در فضای اقلیدسی ، از نظر هندسی کاملا اقلیدسی است و اگر کره محیط یا محاط آن را رسم کنیم داخل سطح کره با هندسه هذلولی و خارج سطح کره با هندسه بیضوی برسی و مطالعه میشود.
در هندسه اقلیدسی هر پاره خط مستقیمی میتواند بیانگر یک عدد باشد که بیانگر طول واقعی آن بوده و مربع و مکعب آن مقدار درستی در محاسبات ریاضی است ولی در هندسههای نااقلیدسی چنین نیست برای اینکه طول واقعی یک منحنی میتواند یک عدد باشد ولی این منحنی نمیتواند حتما و لزوما بیانگر همان عدد باشد ، برای اینکه انحنا یافته است و طول منحنی بیشتر از فاصله دو سر منحنی میباشد و این دو مقدار با هم نامساوی هستند . به طور مثال در هندسه اقلیدسی یک مربع به ضلع 1 متر بیانگر یک متر مربع است و یک مکعب به ضلع 1 متر بیانگر یک متر مکعب است ولی در هندسههای نااقلیدسی این مقدارها متفاوت است که نیاز به در نظر گرفتن ضریبی مبنی بر درصد خطا در محاسبات داریم . اصولا انحنا در هندسههای نااقلیدسی ، به طور کلی نسبت به یک خط راست اقلیدسی مشخص و نسبت به یک دایره با شعاع واحد واقع بر یک صفحه مسطح اقلیدسی سنجیده میشود و صحت هندسههای نااقلیدسی در گرو صحت هندسه اقلیدسی است .